# Simplifying Preference Elicitation in Local Energy Markets: Combinatorial Clock Exchange

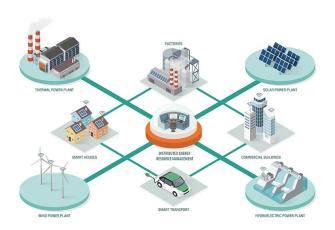
Shobhit Singhal Lesia Mitridati

Department of Wind and Energy Systems, Technical University of Denmark, Kongens Lyngby, Denmark

27 Nov 2025



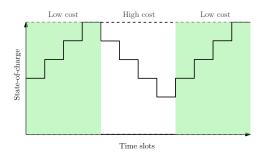
#### Why local energy markets?



- Responsive demand and renewable integration
- Reduced energy and infrastructure costs

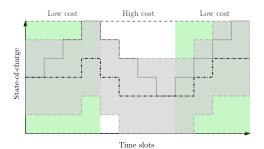


#### Prosumers have complex preferences



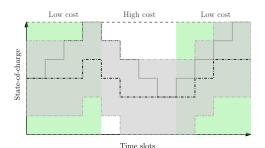
- Battery energy storage system (BESS)
  - Time-coupled charging preferences

#### Prosumers have complex preferences



- Battery energy storage system (BESS)
  - Time-coupled charging preferences
  - Inter-product coupling: energy and flexibility

#### Prosumers have complex preferences



- Battery energy storage system (BESS)
  - Time-coupled charging preferences
  - Inter-product coupling: energy and flexibility
  - Additional product differentiation: e.g. green energy

## Prosumers optimize their utility

- m products
- Preference over packages of products
  - Value function  $v: \mathcal{X} \to \mathbb{R}, \ \mathcal{X} \subset \mathbb{R}^m$
- Product prices  $\lambda \in \mathbb{R}^m$
- Package of products  $\mathbf{x} \in \mathbb{R}^m$

#### Best-response package

$$\mathbf{x}^{\star}(\boldsymbol{\lambda}) \in \max_{\mathbf{x} \in \mathcal{X}} v(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle$$

#### We seek prices that coordinate prosumers

#### Best-response package

$$\mathbf{x}^{\star}(\boldsymbol{\lambda}) \in \max_{\mathbf{x} \in \mathcal{X}} v(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle$$

- n prosumers
- Price  $\lambda$

Production=Consumption

$$\sum_{i=1}^n \mathsf{x}_i^\star(\lambda) = \mathbf{0}$$

#### We seek prices that coordinate prosumers

#### Best-response package

$$\mathbf{x}^{\star}(\boldsymbol{\lambda}) \in \max_{\mathbf{x} \in \mathcal{X}} v(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle$$

- n prosumers
- Price  $\lambda$

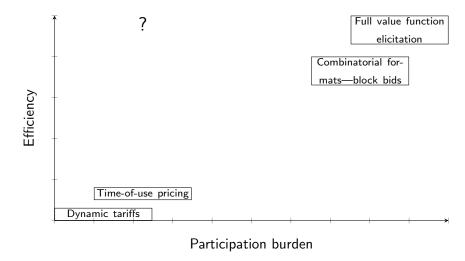
Production=Consumption

$$\sum_{i=1}^n \mathsf{x}_i^\star(\lambda) = \mathbf{0}$$

How to find such prices?



## Ideal: low participation burden + high efficiency



# Equilibrium prices are the solution of the dual program

- v<sub>i</sub>: Prosumer i's value function
- λ: Product prices

#### Optimal welfare

$$\max_{\mathbf{x}_i \in \mathcal{X}_i} \sum_{i=1}^n v_i(\mathbf{x}_i)$$
 
$$\text{s.t. } \sum_{i=1}^n \mathbf{x}_i = \mathbf{0}$$
 prima dual

#### prosumer's problem

$$oldsymbol{\lambda}^{\star} \in \min_{oldsymbol{\lambda}} \left[ \underbrace{\sum_{i \in \mathcal{N}} \left( \max_{\mathbf{x} \in \mathcal{X}_i} v_i(\mathbf{x}) - \langle \lambda, \mathbf{x} \rangle \right)}_{g(oldsymbol{\lambda})} \right]$$

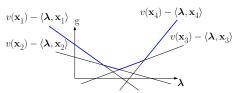
#### The dual problem is convex irrespective of primal

$$\min_{\boldsymbol{\lambda}} \left[ \underbrace{\sum_{i \in \mathcal{N}} \max_{\mathbf{x} \in \mathcal{X}_i} v_i(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle}_{g(\boldsymbol{\lambda})} \right]$$

## The dual problem is convex irrespective of primal

$$\min_{\boldsymbol{\lambda}} \left[ \underbrace{\sum_{i \in \mathcal{N}} \max_{\mathbf{x} \in \mathcal{X}_i} v_i(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle}_{\mathbf{x}(\mathbf{x}_2) - \langle \boldsymbol{\lambda}, \mathbf{x}_2 \rangle} \right]^{v(\mathbf{x}_1) - \langle \boldsymbol{\lambda}, \mathbf{x}_2 \rangle}$$

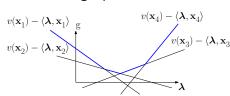
#### Single product case



#### The dual problem is convex irrespective of primal

#### Single product case

$$\min_{\boldsymbol{\lambda}} \left[ \underbrace{\sum_{i \in \mathcal{N}} \max_{\mathbf{x} \in \mathcal{X}_i} v_i(\mathbf{x}) - \langle \boldsymbol{\lambda}, \mathbf{x} \rangle}_{\mathbf{x} \in \mathcal{X}_i} \right] \underbrace{v(\mathbf{x}_1) - \langle \boldsymbol{\lambda}, \mathbf{x}_1 \rangle}_{v(\mathbf{x}_2) - \langle \boldsymbol{\lambda}, \mathbf{x}_2 \rangle} g$$



$$abla g(oldsymbol{\lambda}) = -\sum_{i=1}^n \mathbf{x}_i^\star(oldsymbol{\lambda}) \leftarrow \mathsf{Prosumer's} \; \mathsf{best} \; \mathsf{response}$$

ullet Guess prices  $oldsymbol{\lambda}^t$  and query prosumers' best response  $oldsymbol{\mathsf{x}}_i^\star(oldsymbol{\lambda}^t)$ 

- Guess prices  $\lambda^t$  and query prosumers' best response  $\mathbf{x}_i^{\star}(\lambda^t)$
- ullet Gradient  $abla g \leftarrow -\sum_{i=1}^n \mathbf{x}_i^\star(oldsymbol{\lambda}^t)$

- ullet Guess prices  $oldsymbol{\lambda}^t$  and query prosumers' best response  $oldsymbol{x}_i^\star(oldsymbol{\lambda}^t)$
- ullet Gradient  $abla g \leftarrow -\sum_{i=1}^n \mathbf{x}_i^\star(oldsymbol{\lambda}^t)$
- Gradient descent step:  $oldsymbol{\lambda}^{t+1} \leftarrow oldsymbol{\lambda}^{t} \eta_t 
  abla g$

- Guess prices  $\lambda^t$  and query prosumers' best response  $\mathbf{x}_i^{\star}(\lambda^t)$
- ullet Gradient  $abla g \leftarrow -\sum_{i=1}^n \mathbf{x}_i^\star(oldsymbol{\lambda}^t)$
- Gradient descent step:  $oldsymbol{\lambda}^{t+1} \leftarrow oldsymbol{\lambda}^{t} \eta_t 
  abla g$
- Intuitive update rule:
  - $\bullet \ \, {\sf oversupply} \implies {\sf price} \downarrow \quad \, {\sf overconsumption} \implies {\sf price} \uparrow \\$

#### Step size sequence is crucial for fast convergence

Robbins-Monro conditions on step size  $\eta_t$ 

$$\sum_{t} \eta_{t} = \infty, \ \sum_{t} \eta_{t}^{2} < \infty$$

For e.g., 
$$\eta_t = \frac{1}{t}$$

## Step size sequence is crucial for fast convergence

Robbins-Monro conditions on step size  $\eta_t$ 

$$\sum_{t} \eta_{t} = \infty, \ \sum_{t} \eta_{t}^{2} < \infty$$

For e.g.,  $\eta_t = \frac{1}{t}$ 

Which step size sequence  $\{\eta_t\}_{t=1}^{\infty}$  achieves quick convergence?

## Step size sequence is crucial for fast convergence

Robbins-Monro conditions on step size  $\eta_t$ 

$$\sum_{t} \eta_{t} = \infty, \ \sum_{t} \eta_{t}^{2} < \infty$$

For e.g.,  $\eta_t = \frac{1}{t}$ 

Which step size sequence  $\{\eta_t\}_{t=1}^{\infty}$  achieves quick convergence?

Elicited dataset:  $\{\mathbf{x}^{\star k}, \boldsymbol{\lambda}^k\}_{k=1}^t$ 

## Prosumer value function estimation by inverse optimization

- $\bullet$  Elicited preferences for a prosumer:  $\{\mathbf{x}^{\star k}, \boldsymbol{\lambda}^k\}_{k=1}^t$
- Parametric function:  $\hat{v}(\mathbf{x}; \theta)$

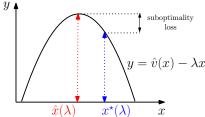
# Prosumer value function estimation by inverse optimization

- ullet Elicited preferences for a prosumer:  $\{\mathbf{x}^{\star k}, oldsymbol{\lambda}^k\}_{k=1}^t$
- Parametric function:  $\hat{v}(\mathbf{x}; \theta)$

Minimize suboptimality loss

$$\min_{\theta} \sum_{k} \hat{v}(\hat{\mathbf{x}}^{k}; \theta) - \hat{v}(\mathbf{x}^{\star k}; \theta) + \langle \boldsymbol{\lambda}^{k}, \mathbf{x}^{\star k} - \hat{\mathbf{x}} \rangle$$

$$\hat{\mathbf{x}}^k \in \arg\max_{\mathbf{x}} \ \hat{v}(\mathbf{x}; \theta) - \langle \boldsymbol{\lambda}^k, \mathbf{x} \rangle$$



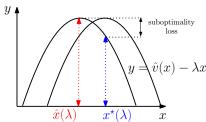
# Prosumer value function estimation by inverse optimization

- ullet Elicited preferences for a prosumer:  $\{\mathbf{x}^{\star k}, oldsymbol{\lambda}^k\}_{k=1}^t$
- Parametric function:  $\hat{v}(\mathbf{x}; \theta)$

Minimize suboptimality loss

$$\min_{\theta} \sum_{k} \hat{v}(\hat{\mathbf{x}}^{k}; \theta) - \hat{v}(\mathbf{x}^{\star k}; \theta) + \langle \boldsymbol{\lambda}^{k}, \mathbf{x}^{\star k} - \hat{\mathbf{x}} \rangle$$

$$\hat{\mathbf{x}}^k \in rg \max_{\mathbf{x}} \ \hat{v}(\mathbf{x}; heta) - \langle oldsymbol{\lambda}^k, \mathbf{x} 
angle$$



## Machine learning-aided step size computation

Estimated dual problem

$$\hat{g}(\lambda) = \max_{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} \hat{v}(\mathbf{x}_i) - \langle \lambda, \mathbf{x}_i \rangle,$$

# Machine learning-aided step size computation

Estimated dual problem

$$\hat{g}(\lambda) = \max_{\mathbf{x} \in \mathcal{X}} \sum_{i=1}^{n} \hat{v}(\mathbf{x}_i) - \langle \lambda, \mathbf{x}_i \rangle,$$

#### ML-aided step size

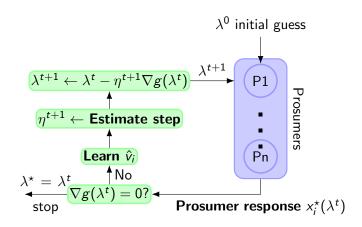
$$\hat{\eta}_t \in rg \min_{\eta} \quad \hat{g}(oldsymbol{\lambda}^t - \eta 
abla g(oldsymbol{\lambda}^t))$$
  $\eta \in [\underline{\eta}^t, ar{\eta}^t]$ 

$$oldsymbol{\lambda}^{t+1} \leftarrow oldsymbol{\lambda}^t - \hat{oldsymbol{\eta}}_t 
abla g(oldsymbol{\lambda}^t)$$

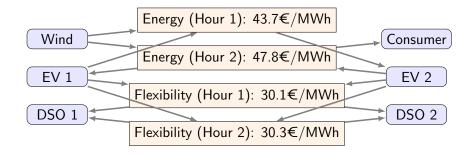
#### Pre-determined step size

$$oldsymbol{\lambda}^{t+1} \leftarrow oldsymbol{\lambda}^t - oldsymbol{\eta_t} 
abla g(oldsymbol{\lambda}^t)$$

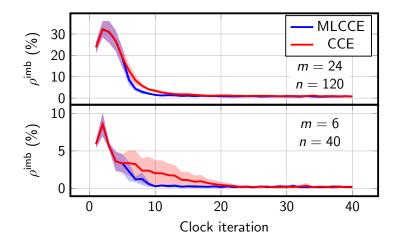
## Machine learning-aided Combinatorial Clock Exchange



#### Example local energy market clearing



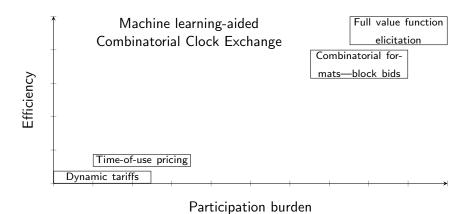
#### MLCCE needs fewer iterations than CCE



Note that the step size sequence in CCE has been pre-tuned.



#### Conclusion



Shobhit Singhal and Lesia Mitridati. "Simplifying Preference Elicitation in Local Energy Markets: Combinatorial Clock Exchange". In: arXiv preprint arXiv:2510.27306 (2025)