Equilibrium models to analyze TSO-DSOs coordination architectures in two-stage energy markets under uncertainty of demand and renewable generation

Giovanni Micheli

Department of Management, Information and Production Engineering
University of Bergamo (ITALY)

Joint work with M.T. Vespucci, G. Migliavacca, D. Siface

Energy System Optimization Workshop

Advanced Decision-Making for Net-Zero Energy Systems

Research Motivation

Motivation: Flexibility in the Energy Transition

Renewables growth

Flexibility needs

TSO-DSOs interaction

- Increasing need of flexibility
 - Generation-demand balance
 - Congestion management.
- **Distributed resources** can contribute
 - Locally
 - To the transmission grid.
- Challenge: coordination & market design
 - TSO-DSO dispatch alignment
 - Exercise of market power.

Motivation: Flexibility in the Energy Transition

Renewables growth

Flexibility needs

TSO-DSOs interaction

- Increasing need of flexibility
 - Generation-demand balance
 - Congestion management.
- Distributed resources can contribute
 - Locally
 - To the transmission grid.
- Challenge: coordination & market design
 - TSO-DSO dispatch alignment
 - Exercise of market power.

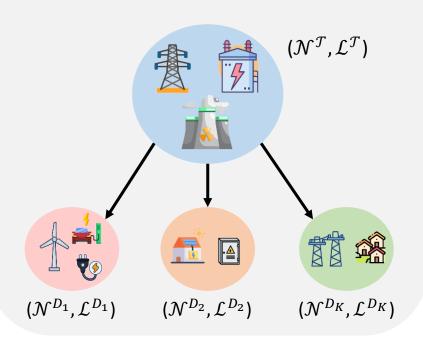
Research Goal

Define the best coordination scheme between TSO & DSOs for balancing and congestion management, accounting for market power.

Mathematical Formulation

Problem Overview

Power System Representation



Market Structure

- 1. Day-Ahead Market (DAM)
- Forecasted net load covered by programmable generation units (\mathcal{U}).
- 2. Ancillary services market (ASM)
- Balancing & congestion management
- Actions:
 - ✓ Adjust programmable generation
 - ✓ Curtail RES generation
 - ✓ Curtail loads.

Uncertainty

- Applies to realt-time demand and RES generation
- Represented by a set S of **scenarios**.

Strategic Game

Market Players

• Each player $i \in I$ controls:

Strategic Behaviour

- Market players define joint price bidding strategies on DAM & ASM.
- The maximum available power capacity is offered.

Assessing Market Power

- Consider each market player separately
- Formulate its bidding optimization problem:
 - Decision: determine bid prices
 - Objective: maximize expected profits
 - Constraints: respect market clearing rules (DAM & ASM).

TSO-DSOs Coordination Schemes

We examine three coordination schemes:

A. Two-stage architecture

- 1. DAM
- 2. Common ASM for $\mathcal{T}+\mathcal{D}$

B. Three-stage architecture 1

- 1. DAM
- 2. ASM in each distribution network \mathcal{D}_k , with resources in \mathcal{D}_k
- 3. ASM in transmission \mathcal{T} , with resources in \mathcal{T}

C. Three-stage architecture 2

- 1. DAM
- 2. ASM in each distribution network \mathcal{D}_k , with resources in \mathcal{D}_k
- 3. ASM in transmission \mathcal{T} , with resources in \mathcal{T} + residual resources in \mathcal{D}

Scheme A: Two-stage architecture

Stage 1 – DAM

- Players submit sell bids
- DAM cleared by DAM Operator.

Stage 2 – ASM

- Players submit adjustment bids
- ASM cleared by ASM Operator (coordinated TSO + DSO)

Decisions of player *i*

On DAM

 $u \in \mathcal{U}_i$ Price of sell bid

On ASM

$$u \in \mathcal{U}_i$$
 Price of **upward** regulation bid

$$u \in \mathcal{U}_i$$
 Price of **downward** regulation bid

$$n \in \mathcal{N}_i$$
 Price of **load curtailment** bid

Scheme A: Mathematical formulation

$$\max \underbrace{\sum_{u \in \mathcal{U}_i} (\lambda - C_u) \ g_u}_{\text{Revenues on DAM}} + \underbrace{\sum_{s \in \mathcal{S}} \sigma_s \left\{ \sum_{u \in \mathcal{U}_i} \left[(b_u^{\mathcal{U},\uparrow} - C_u^{\uparrow}) \ g_{u,s}^{\uparrow} + (C_u^{\downarrow} - b_u^{\mathcal{U},\downarrow}) \ g_{u,s}^{\downarrow} \right] + \sum_{n \in \mathcal{N}_i} b_n^{\mathcal{N},\downarrow} \ d_{n,s}^{\downarrow} \right\},}_{\text{Expected revenues on ASM}}$$

s. t.
$$g_u \in \arg\min \sum_{u \in \mathcal{U}} b_u^{\mathcal{U}} g_u$$
 DAM
s. t. $\sum_{u \in \mathcal{U}} g_u = \sum_{n \in \mathcal{N}} D_n - \sum_{n \in \mathcal{N}} W_n$: $[\lambda]$
 $0 \le g_u \le G_u, \quad u \in \mathcal{U}$

$$\left(g_{u,s}^{\uparrow},g_{u,s}^{\downarrow},d_{n,s}^{\downarrow},w_{n,s}^{\downarrow}\right) \in \arg\min \underbrace{\sum_{u \in \mathcal{U}} b_{u}^{\mathcal{U},\uparrow} \ g_{u,s}^{\uparrow} + \sum_{n \in \mathcal{N}} b_{n}^{\mathcal{N},\downarrow} \ d_{n,s}^{\downarrow} - \sum_{u \in \mathcal{U}} b_{u}^{\mathcal{U},\downarrow} \ g_{u,s}^{\downarrow}}_{\text{Upward regulation costs}} \right)$$
 Downward regulation revenues
$$\text{s. t. } \sum_{u \in \mathcal{U}} g_{u,s}^{\uparrow} + \sum_{n \in \mathcal{N}} d_{n,s}^{\downarrow} - \sum_{u \in \mathcal{U}} g_{u,s}^{\downarrow} - \sum_{n \in \mathcal{N}} w_{n,s}^{\downarrow} = \underbrace{\Delta_{s}}_{\text{Total Imbalance}}$$

$$\sum_{n \in \mathcal{N}} H_{l,n} \left[\sum_{u \in \mathcal{U}_{n}} (g_{u} + g_{u,s}^{\uparrow} - g_{u,s}^{\downarrow}) + (\tilde{W}_{n,s} - w_{n,s}^{\downarrow}) - (\tilde{D}_{n,s} - d_{n,s}^{\downarrow}) \right] \leq \overline{F}_{l}, \quad l \in \mathcal{L}$$
 Net injection in node n
$$0 \leq g_{u,s}^{\uparrow} \leq G_{u} - g_{u}, \qquad \qquad u \in \mathcal{U}$$

$$0 \leq g_{u,s}^{\downarrow} \leq g_{u}, \qquad \qquad u \in \mathcal{U}$$

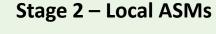
$$0 \leq d_{n,s}^{\downarrow} \leq \delta_{n} \ \tilde{D}_{n,s}, \qquad \qquad n \in \mathcal{N}$$

$$0 \leq w_{n,s}^{\downarrow} \leq \tilde{W}_{n,s}, \qquad \qquad n \in \mathcal{N}$$

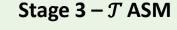
Scheme B: Three-stage architecture 1

Stage 1 – DAM

- Players submit sell bids
- DAM cleared by DAM Operator.



- Players submit adjustment bids for \mathcal{D} resources
- Every local ASM is cleared by the correspondent DSO



- Players submit adjustment bids for T resources
- \mathcal{T} ASM is cleared by the TSO

Decisions of player *i*

On DAM

$$u \in \mathcal{U}_i$$

 $b_{u}^{\mathcal{U}}$

Price of sell bid

On the corresponding ASM

$$u \in \mathcal{U}_i$$

$$b_{u}^{\mathcal{U},\uparrow}$$

Price of **upward** regulation bid

$$u \in \mathcal{U}_i$$

$$b_{u}^{\mathcal{U},\downarrow}$$

Price of downward regulation bid

$$n \in \mathcal{N}_i$$

$$b_n^{\mathcal{N},\downarrow}$$

Price of load curtailment bid

Scheme B: Mathematical formulation (1/2)

$$\max \underbrace{\sum_{u \in \mathcal{U}_i} (\lambda - C_u) \ g_u}_{} + \underbrace{\sum_{s \in \mathcal{S}} \sigma_s \left\{ \sum_{u \in \mathcal{U}_i} \left[(b_u^{\mathcal{U},\uparrow} - C_u^{\uparrow}) \ g_{u,s}^{\uparrow} + (C_u^{\downarrow} - b_u^{\mathcal{U},\downarrow}) \ g_{u,s}^{\downarrow} \right] + \sum_{n \in \mathcal{N}_i} b_n^{\mathcal{N},\downarrow} \ d_{n,s}^{\downarrow} \right\},$$

Revenues on DAM Expected revenues on ASM

s. t.
$$g_u \in \arg\min \sum_{u \in \mathcal{U}} b_u^{\mathcal{U}} g_u$$
 DAM
s. t. $\sum_{u \in \mathcal{U}} g_u = \sum_{n \in \mathcal{N}} D_n - \sum_{n \in \mathcal{N}} W_n$: $[\lambda]$
 $0 \le g_u \le G_u, \quad u \in \mathcal{U}$

$$(g_{u,s}^{\uparrow}, g_{u,s}^{\downarrow}, d_{n,s}^{\downarrow}, w_{n,s}^{\downarrow}) \in \arg\min \underbrace{\sum_{u \in \mathcal{U}^{\mathcal{D}}} b_{u}^{\mathcal{U},\uparrow} \ g_{u,s}^{\uparrow} + \sum_{n \in \mathcal{N}^{\mathcal{D}}} b_{n}^{\mathcal{N},\downarrow} \ d_{n,s}^{\downarrow} - \sum_{u \in \mathcal{U}^{\mathcal{D}}} b_{u}^{\mathcal{U},\downarrow} \ g_{u,s}^{\downarrow} } \underbrace{\text{Local ASMs}}$$

$$\text{Local ASMs}$$

$$\text{S. t. } \underbrace{\sum_{u \in \mathcal{U}^{\mathcal{D}_{k}}} g_{u,s}^{\uparrow} + \sum_{n \in \mathcal{N}^{\mathcal{D}_{k}}} d_{n,s}^{\downarrow} - \sum_{u \in \mathcal{U}^{\mathcal{D}_{k}}} w_{n,s}^{\downarrow} = \underbrace{\sum_{u \in \mathcal{U}^{\mathcal{D}_{k}}} \Delta_{s}^{\mathcal{D}_{k}}} 1 \leq k \leq K }_{\text{Imbalance in network } \mathcal{D}_{k}} 1 \leq k \leq K$$

$$\underbrace{\sum_{n \in \mathcal{N}^{\mathcal{D}_{k}}} H_{l,n} \left[\sum_{u \in \mathcal{U}_{n}} (g_{u} + g_{u,s}^{\uparrow} - g_{u,s}^{\downarrow}) + (\tilde{W}_{n,s} - w_{n,s}^{\downarrow}) - (\tilde{D}_{n,s} - d_{n,s}^{\downarrow}) \right] \leq \overline{F}_{l}, \quad l \in \mathcal{L}^{\mathcal{D}_{k}}, \\ 1 \leq k \leq K$$

$$1 \leq k \leq K$$

$$0 \leq g_{u,s}^{\uparrow} \leq G_{u} - g_{u}, \qquad \qquad u \in \mathcal{U}^{\mathcal{D}_{k}}, 1 \leq k \leq K$$

$$0 \leq g_{u,s}^{\downarrow} \leq g_{u}, \qquad \qquad u \in \mathcal{U}^{\mathcal{D}_{k}}, 1 \leq k \leq K$$

$$0 \leq g_{u,s}^{\downarrow} \leq \delta_{n} \ \tilde{D}_{n,s}, \qquad \qquad n \in \mathcal{N}^{\mathcal{D}_{k}}, 1 \leq k \leq K$$

$$0 \leq w_{n,s}^{\downarrow} \leq \delta_{n} \ \tilde{D}_{n,s}, \qquad \qquad n \in \mathcal{N}^{\mathcal{D}_{k}}, 1 \leq k \leq K$$

$$0 \leq w_{n,s}^{\downarrow} \leq \delta_{n} \ \tilde{D}_{n,s}, \qquad \qquad n \in \mathcal{N}^{\mathcal{D}_{k}}, 1 \leq k \leq K$$

Scheme B: Mathematical formulation (2/2)

$$\max \underbrace{\sum_{u \in \mathcal{U}_i} (\lambda - C_u) \ g_u}_{\text{Revenues on DAM}} + \underbrace{\sum_{s \in \mathcal{S}} \sigma_s \left\{ \sum_{u \in \mathcal{U}_i} \left[(b_u^{\mathcal{U},\uparrow} - C_u^{\uparrow}) \ g_{u,s}^{\uparrow} + (C_u^{\downarrow} - b_u^{\mathcal{U},\downarrow}) \ g_{u,s}^{\downarrow} \right] + \sum_{n \in \mathcal{N}_i} b_n^{\mathcal{N},\downarrow} \ d_{n,s}^{\downarrow} \right\},}_{\text{Expected revenues on ASM}}$$

s. t.

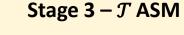
Scheme C: Three-stage architecture 2

Stage 1 – DAM

- Players submit sell bids
- DAM cleared by DAM Operator.

Stage 2 – Local ASMs

- Players submit adjustment bids for \mathcal{D} resources
- Every local ASM is cleared by the correspondent DSO



- Players submit adjustment bids for \mathcal{T} and \mathcal{D} resources
- T ASM is cleared by the TSO

Decisions of player *i*

On DAM

$$u \in \mathcal{U}_i$$
 $b_u^{\mathcal{U}}$

On ASM

 $\begin{array}{lll} \blacktriangleright \ \, \operatorname{Local} \, \operatorname{ASM} & \qquad \quad \, \blacktriangleright \, \, \mathcal{T} \, \operatorname{ASM} \\ & u \in \mathcal{U}_i^{\mathcal{D}} & b_u^{\mathcal{U},\mathcal{D},\uparrow} & u \in \mathcal{U}_i & b_u^{\mathcal{U},\mathcal{T},\uparrow} \\ & u \in \mathcal{U}_i^{\mathcal{D}} & b_u^{\mathcal{U},\mathcal{D},\downarrow} & u \in \mathcal{U}_i & b_u^{\mathcal{U},\mathcal{T},\downarrow} \\ & n \in \mathcal{N}_i^{\mathcal{D}} & b_n^{\mathcal{N},\mathcal{D},\downarrow} & n \in \mathcal{N}_i & b_n^{\mathcal{N},\mathcal{T},\downarrow} \end{array}$

Scheme C: Mathematical formulation (1/2)

$$\max \underbrace{\sum_{u \in \mathcal{U}_{i}} (\boldsymbol{\lambda} - C_{u}) \ \boldsymbol{g}_{u}}_{\text{Profit on DAM}} + \sum_{s \in \mathcal{S}} \sigma_{s} \left\{ \underbrace{\sum_{u \in \mathcal{U}_{i}^{\mathcal{D}}} \left[(b_{u}^{\mathcal{U}, \mathcal{D}, \uparrow} - C_{u}^{\uparrow}) \ \boldsymbol{g}_{u, s}^{\mathcal{D}, \uparrow} + (C_{u}^{\downarrow} - b_{u}^{\mathcal{U}, \mathcal{D}, \downarrow}) \ \boldsymbol{g}_{u, s}^{\mathcal{D}, \downarrow} \right] + \sum_{n \in \mathcal{N}_{i}^{\mathcal{D}}} b_{n}^{\mathcal{N}, \mathcal{D}, \downarrow} \ \boldsymbol{d}_{n, s}^{\mathcal{D}, \downarrow} + \underbrace{\sum_{u \in \mathcal{N}_{i}^{\mathcal{D}}} b_{n}^{\mathcal{N}, \mathcal{D}, \downarrow} \ \boldsymbol{d}_{n, s}^{\mathcal{D}, \downarrow} + \sum_{u \in \mathcal{N}_{i}^{\mathcal{D}}} b_{n}^{\mathcal{N}, \mathcal{D}, \downarrow} \ \boldsymbol{d}_{n, s}^{\mathcal{D}, \downarrow} + \underbrace{\sum_{u \in \mathcal{U}_{i}^{\mathcal{D}}} \left[(b_{u}^{\mathcal{U}, \mathcal{T}, \uparrow} - C_{u}^{\uparrow}) \ \boldsymbol{g}_{u, s}^{\mathcal{T}, \uparrow} + (C_{u}^{\downarrow} - b_{u}^{\mathcal{U}, \mathcal{T}, \downarrow}) \ \boldsymbol{g}_{u, s}^{\mathcal{T}, \downarrow} \right] + \sum_{n \in \mathcal{N}_{i}^{\mathcal{D}}} b_{n}^{\mathcal{N}, \mathcal{T}, \downarrow} \ \boldsymbol{d}_{n, s}^{\mathcal{T}, \downarrow} \right\},$$

Profit on \mathcal{T} -ASM in scenario s

s. t.

$$g_{u} \in \arg\min \sum_{u \in \mathcal{U}} b_{u}^{\mathcal{U}} g_{u}$$
 DAM
s. t. $\sum_{u \in \mathcal{U}} g_{u} = \sum_{n \in \mathcal{N}} D_{n} - \sum_{n \in \mathcal{N}} W_{n}$: $[\lambda]$
 $0 \leq g_{u} \leq G_{u}, \quad u \in \mathcal{U}$

$$\begin{pmatrix} g_{u,s}^{\mathcal{D},\uparrow},\ g_{u,s}^{\mathcal{D},\downarrow} \\ d_{n,s}^{\mathcal{D},\uparrow},\ g_{u,s}^{\mathcal{D},\downarrow} \end{pmatrix} \in \arg\min \sum_{u \in \mathcal{U}^{\mathcal{D}_k}} b_u^{\mathcal{U},\mathcal{D},\uparrow}\ g_{u,s}^{\mathcal{D},\uparrow} + \sum_{n \in \mathcal{N}^{\mathcal{D}_k}} b_n^{\mathcal{N},\mathcal{D},\downarrow}\ d_{n,s}^{\mathcal{D},\downarrow} - \sum_{u \in \mathcal{U}^{\mathcal{D}_k}} b_u^{\mathcal{U},\mathcal{D},\downarrow}\ g_{u,s}^{\mathcal{D},\downarrow} = \Delta_s^{\mathcal{D}_k}, \quad 1 \leq k \leq K$$

$$\text{S. t. } \sum_{u \in \mathcal{U}^{\mathcal{D}_k}} g_{u,s}^{\mathcal{D},\uparrow} + \sum_{n \in \mathcal{N}^{\mathcal{D}_k}} d_{n,s}^{\mathcal{D},\downarrow} - \sum_{u \in \mathcal{U}^{\mathcal{D}_k}} g_{u,s}^{\mathcal{D},\downarrow} - \sum_{n \in \mathcal{N}^{\mathcal{D}_k}} w_{n,s}^{\mathcal{D},\downarrow} = \Delta_s^{\mathcal{D}_k}, \quad 1 \leq k \leq K$$

$$\sum_{n \in \mathcal{N}^{\mathcal{D}_k}} H_{l,n} \Big[\sum_{u \in \mathcal{U}_n} (g_u + g_{u,s}^{\mathcal{D},\uparrow} - g_{u,s}^{\mathcal{D},\downarrow}) + (\tilde{W}_{n,s} - w_{n,s}^{\mathcal{D},\downarrow}) +$$

$$- (\tilde{D}_{n,s} - d_{n,s}^{\mathcal{D},\downarrow}) \Big] \leq \overline{F}_l, \qquad \qquad l \in \mathcal{L}^{\mathcal{D}_k}, 1 \leq k \leq K$$

$$0 \leq g_{u,s}^{\mathcal{D},\downarrow} \leq G_u - g_u, \qquad \qquad \qquad u \in \mathcal{U}^{\mathcal{D}_k}, 1 \leq k \leq K$$

$$0 \leq g_{u,s}^{\mathcal{D},\downarrow} \leq g_u, \qquad \qquad u \in \mathcal{U}^{\mathcal{D}_k}, 1 \leq k \leq K$$

$$0 \leq d_{n,s}^{\mathcal{D},\downarrow} \leq \delta_n \ \tilde{D}_{n,s}, \qquad \qquad n \in \mathcal{N}^{\mathcal{D}_k}, 1 \leq k \leq K$$

$$0 \leq w_{n,s}^{\mathcal{D},\downarrow} \leq \tilde{W}_{n,s}, \qquad \qquad n \in \mathcal{N}^{\mathcal{D}_k}, 1 \leq k \leq K$$

Scheme C: Mathematical formulation (2/2)

s. t.
$$\begin{pmatrix} g_{u,s}^{T,\uparrow}, g_{u,s}^{T,\downarrow} \\ d_{n,s}^{T,\downarrow}, w_{n,s}^{T,\downarrow} \end{pmatrix} \in \arg\min \sum_{u \in \mathcal{U}} b_{u}^{\mathcal{U},T,\uparrow} g_{u,s}^{T,\uparrow} + \sum_{n \in \mathcal{N}} b_{n}^{\mathcal{N},T,\downarrow} d_{n,s}^{T,\downarrow} - \sum_{u \in \mathcal{U}} b_{u}^{\mathcal{U},T,\downarrow} g_{u,s}^{T,\downarrow} = \Delta_{s}^{T} \\ \text{s. t. } \sum_{u \in \mathcal{U}} g_{u,s}^{T,\uparrow} + \sum_{n \in \mathcal{N}} d_{n,s}^{T,\downarrow} - \sum_{u \in \mathcal{U}} g_{u,s}^{T,\downarrow} - \sum_{n \in \mathcal{N}} w_{n,s}^{T,\downarrow} = \Delta_{s}^{T} \\ \sum_{n \in \mathcal{N}^{T}} H_{l,n} \Big[\sum_{u \in \mathcal{U}_{n}} (g_{u} + g_{u,s}^{T,\uparrow} - g_{u,s}^{T,\downarrow}) + (\tilde{W}_{n,s} - w_{n,s}^{T,\downarrow}) - (\tilde{D}_{n,s} - d_{n,s}^{T,\downarrow}) \Big] + \\ + \sum_{k=1}^{K} \sum_{n \in \mathcal{N}^{D}_{k}} H_{l,n} \Big[\sum_{u \in \mathcal{U}_{n}} (g_{u} + g_{u,s}^{T,\uparrow} - g_{u,s}^{T,\downarrow} + g_{u,s}^{D,\uparrow} - g_{u,s}^{D,\downarrow}) + (\tilde{W}_{n,s} + w_{n,s}^{T,\downarrow}) \Big] + \\ - w_{n,s}^{T,\downarrow} - w_{n,s}^{D,\downarrow} - (\tilde{D}_{n,s} - d_{n,s}^{T,\downarrow} - d_{n,s}^{D,\downarrow}) \Big] \leq \overline{F}_{l}, \qquad l \in \mathcal{L}^{T} \\ 0 \leq g_{u,s}^{T,\uparrow} \leq G_{u} - g_{u}, \qquad u \in \mathcal{U}^{T} \\ 0 \leq g_{u,s}^{T,\uparrow} \leq G_{u} - g_{u}, - g_{u,s}^{D,\uparrow} + g_{u,s}^{D,\downarrow}, \qquad u \in \mathcal{U}^{D} \\ 0 \leq g_{u,s}^{T,\downarrow} \leq g_{u}, \qquad u \in \mathcal{U}^{T} \\ 0 \leq g_{u,s}^{T,\downarrow} \leq g_{u} + g_{u,s}^{D,\uparrow} - g_{u,s}^{D,\downarrow}, \qquad u \in \mathcal{U}^{D} \\ 0 \leq d_{n,s}^{T,\downarrow} \leq \delta_{n} \, \tilde{D}_{n,s}, \qquad n \in \mathcal{N}^{T} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{N}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{M}^{D} \\ 0 \leq w_{n,s}^{T,\downarrow} \leq \tilde{W}_{n,s}, \qquad n \in \mathcal{M}^{D}$$

From Bilevel to MILP Formulation

• The bidding problem of market player i is a **nonlinear bilevel** program. We reformulate it as an equivalent **MILP** through the following steps:

Step 1: KKT Reformulation

- Replace the lower-level problems by their KKT conditions
- Obtain a single-level optimization problem.

- Step 2: Linearizing Complementarity
- Introduce SOS1 variables
- Enforce complementarity constraints linearly

- Step 3: Discrete Bid Prices
- Assume bid prices are chosen from discrete sets
- Apply McCormick reformulation to binary x continuous terms

Bid prices are suitably initialized

Bid prices are suitably initialized

Consider the first player i=1

Bid prices are suitably initialized

Consider the first player i = 1

Problem solution

- Compute the best response of player i to competitors
- Update bid prices for resources $u \in \mathcal{U}_i$ and $n \in \mathcal{N}_i$ of player i

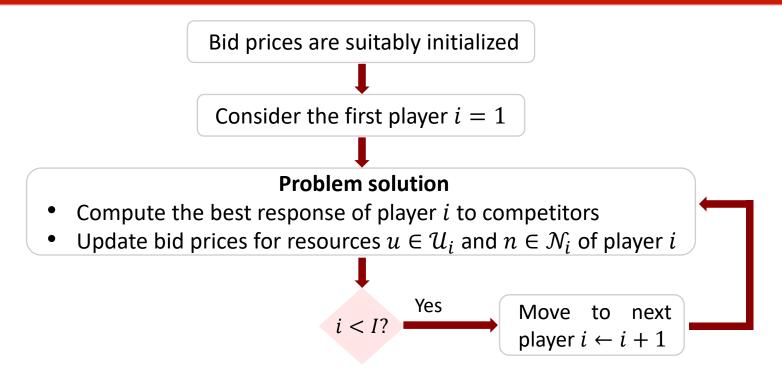
Bid prices are suitably initialized

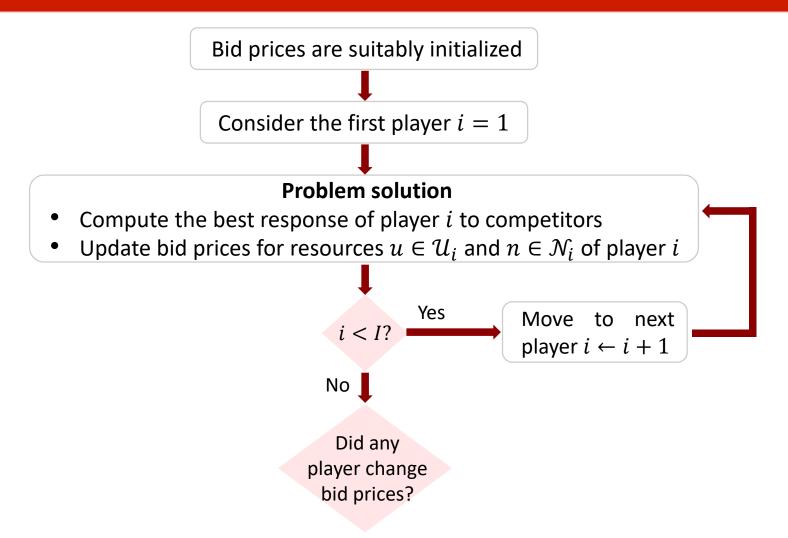
Consider the first player i = 1

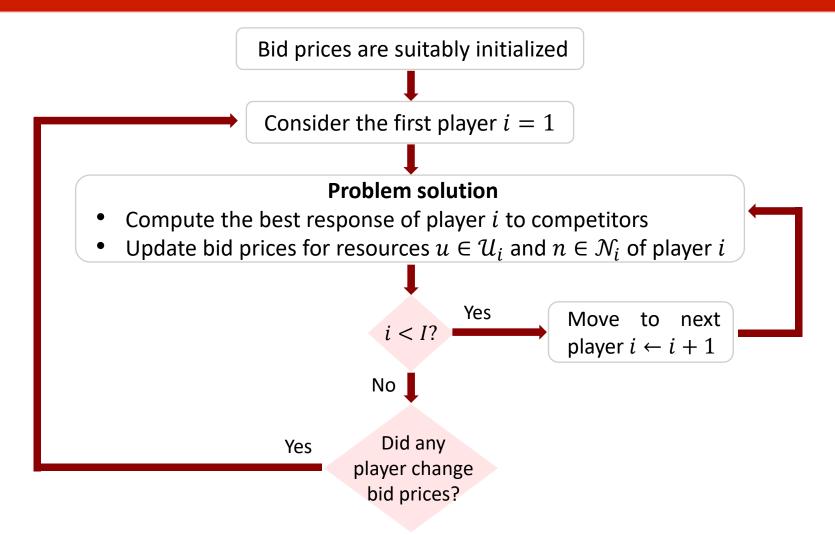
Problem solution

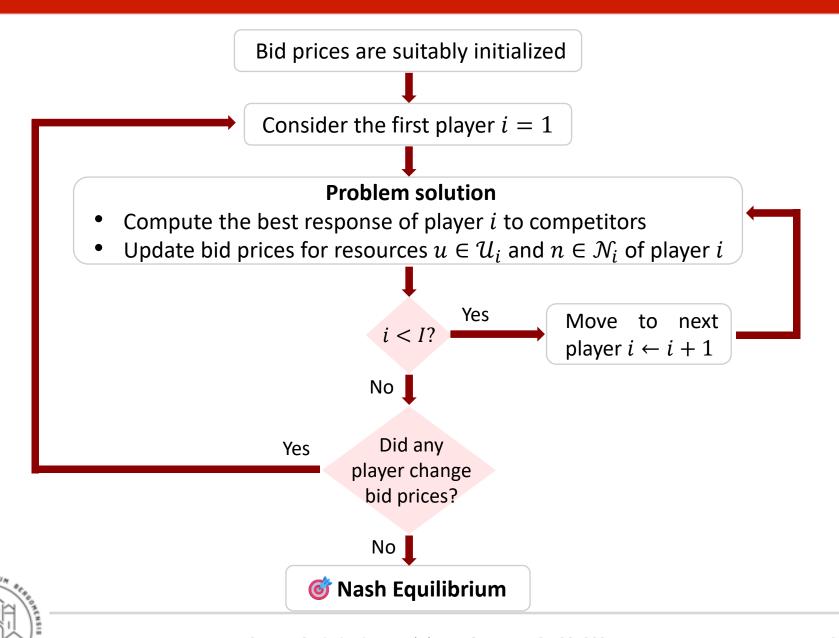
- Compute the best response of player i to competitors
- Update bid prices for resources $u \in \mathcal{U}_i$ and $n \in \mathcal{N}_i$ of player i

i < *I*?







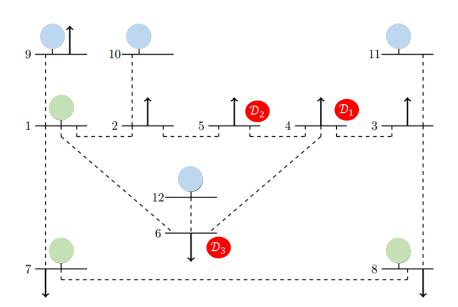


Numerical Results

Case study

A CIGRE transmission network connected to three distribution networks.

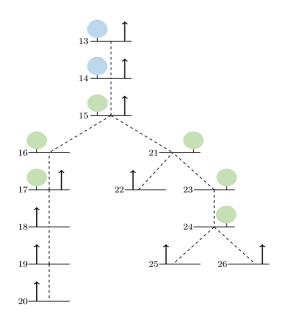
Transmission System



Imbalance Scenarios

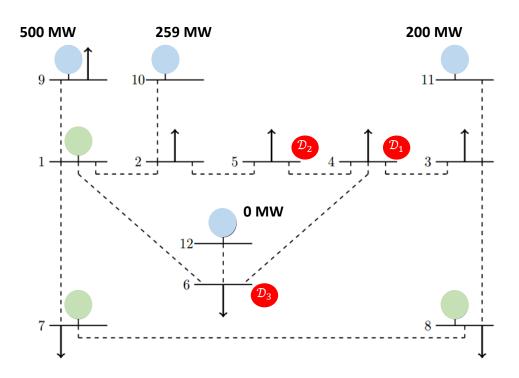
- 7 scenarios
- Forecast error on load and RES: {+0.25; +0.15; +0.05; 0; -0.05; -0.15; -0.25}.

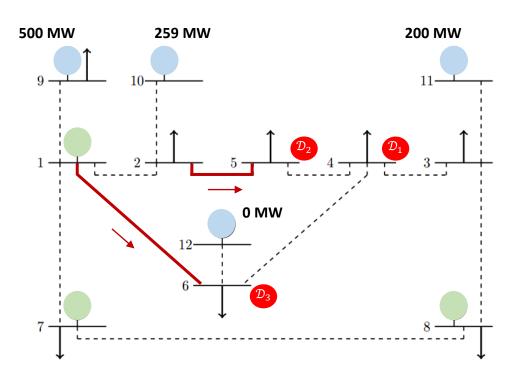
Distribution System \mathcal{D}_k



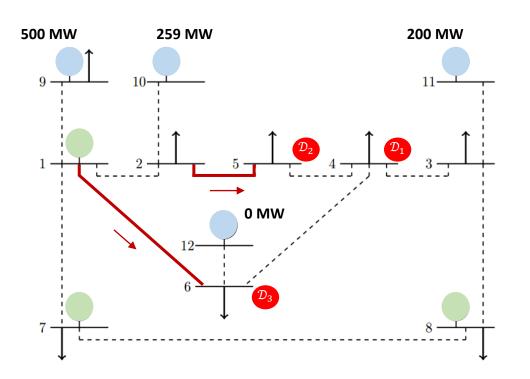
Bidding Strategies

- 9 market players
- 5 price strategies on the DAM
- 3 price strategies for upward and downward regulation on the ASM.

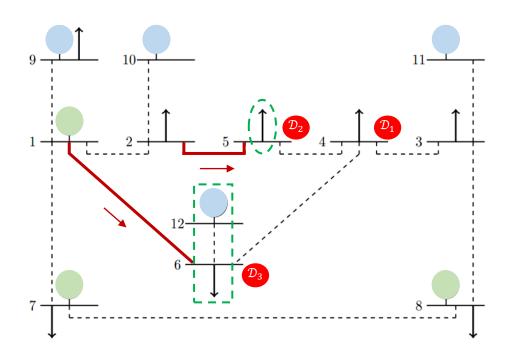




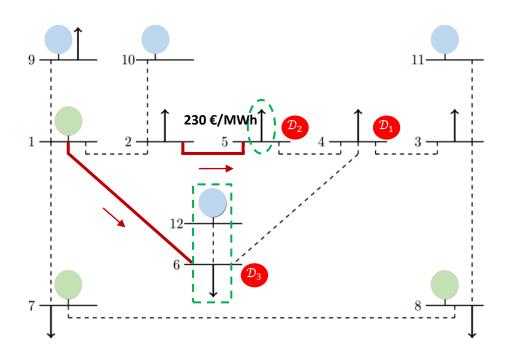
 DA plan violates transmission line limits.



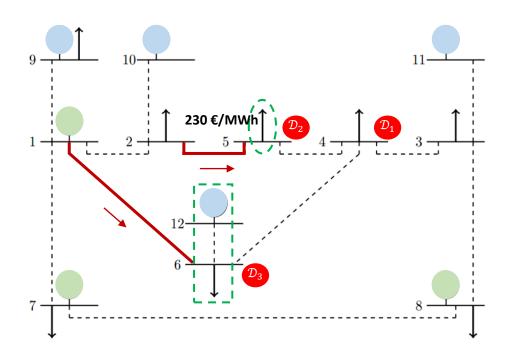
- DA plan violates transmission line limits.
- Congestion enables market power exercise.



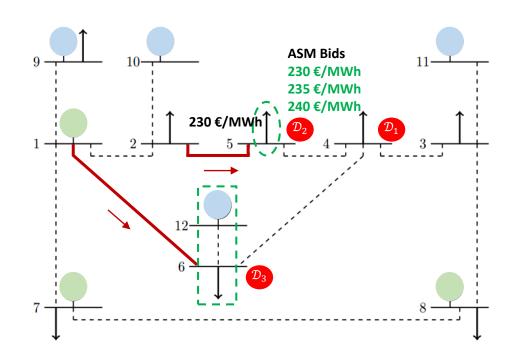
- DA plan **violates** transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - 6/12



- DA plan **violates** transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - 6/12



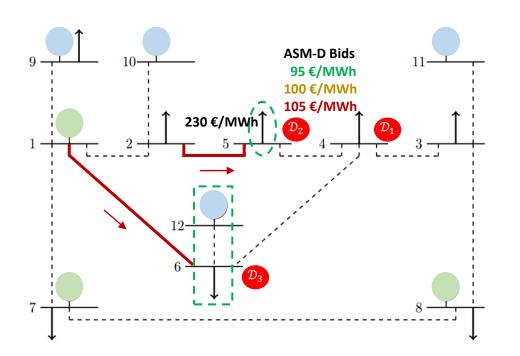
- DA plan **violates** transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - **6/12**
- Different ASM configurations lead to different strategic behaviors.



- DA plan violates transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - **6/12**
- Different ASM configurations lead to different strategic behaviors.

Scheme A

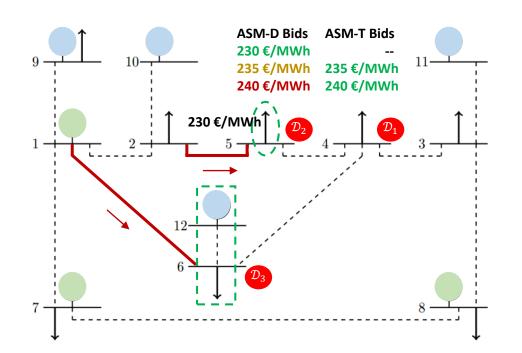
- Resources in distribution network 2 submit maximum-priced bids in the common ASM.
- All bids are accepted to relieve congestion of line 2-5.



- DA plan violates transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - **6/12**
- Different ASM configurations lead to different strategic behaviors.

Scheme B

- Distribution resources select the minimum-priced option to be dispatched on the local ASM.
- Only two bids are accepted.



- DA plan violates transmission line limits.
- Congestion enables market power exercise.
- Critical buses:
 - **–** 5
 - **6/12**
- Different ASM configurations lead to different strategic behaviors.

Scheme C

- Distribution resources select the maximum-priced option.
- Only two bids are accepted on ASM-D.
- Resources not fully dispatched on ASM-D are fully dispatched on ASM-T.

Conclusions

• Numerical tests show **scheme B** is the most efficient, since local ASM are not affected by the high prices formed in the transmission ASM under congestion.

Scheme	A	В	С
Expected Cost (€)	6717.77	6390.01	7863.51

Micheli, G., Vespucci, M.T., Migliavacca, G. & Siface, D. (2025). Equilibrium models to analyse the impactof different coordination schemes between Transmission System Operator and Distribution System Operators on market power in sequentially-cleared energy and ancillary services markets underload and renewable generation uncertainty. *Under Review*. Preprint available at https://doi.org/10.48550/arXiv.2505.15168.

Thanks for your attention

